2023年12月4-7日,香港中文大学经济系副教授,决策科学与管理经济系副教授史震涛应JJB竞技宝邀请,开展主题为“A Short Course on Machine Learning with Macroeconomic Time Series”的短期课程,史震涛教授受到了JJB竞技宝老师和同学们的热烈欢迎,JJB竞技宝黄乃静副教授主持课程。
史震涛,香港中文大学经济系副教授,决策科学与管理经济系副教授。史震涛教授于2014年获得耶鲁大学经济学博士学位。他的研究聚焦于机器学习算法在计量经济学场景中的渐进理论,涵盖截面数据、时间序列和面板等多种数据类型。他的研究成果已经发表在包括Econometrica, Review of Economics and Statistics,International Economic Review等国际一流期刊上,并担任Journal of Econometrics, Econometric Theory, Journal of the Royal Statistical Society (Series B),Journal of the American Statistical Association等计量和统计期刊的审稿人。
课程伊始,史震涛教授强调了在经济学研究中时间序列的重要性。非平稳时间序列在实证宏观经济学中无处不在,例如在经济增长、商业周期、货币政策于财政政策制定、宏观变量预测等领域,时间序列分析都十分重要。对非平稳时间序列数据进行正确处理,在宏观经济分析中是至关重要的。
随后,史震涛教授从非平稳时间序列的统计特性讲起,比如单位根过程、local-to-unit过程等,并引入机器学习算法,介绍其在非平稳时间序列分析中的应用。史震涛教授重点介绍了被广泛应用的LASSO算法、岭回归算法等。
在应用案例讲析中,史震涛教授介绍了前沿的ridgeless算法。他介绍,岭回归(ridge)算法是非平稳时间序列分析中常用的机器学习分析方法,其特点是不会将大部分解释变量的系数收缩为0。但最近使用更为广泛的ridgeless算法对此做出了改进,会将部分变量的系数直接收缩为0,然而,实证证据表明,这种算法在面对高维解释变量时效果不佳。史震涛教授提出,如果向模型中增加噪声,反而能提高预测精度,并进行了严格的理论证明。
史震涛教授强调,事实证明,在时间序列分析中,噪声并不一定是“有害的”,从固有的思路中跳脱出来,更好地利用噪声提升预测精度,这种创新的思想是值得学习的。
在课程中,老师和同学们都积极思考,踊跃提问,参与到讨论中来。史震涛教授也耐心解答了老师、同学们的问题。课程气氛热烈,老师、同学们都觉得受益匪浅。
本课程受到国合处引智项目“G2022115005L”支持。
撰稿:赵子轩
审稿:何召鹏、黄乃静